The Path-Packing Structure of Graphs
نویسندگان
چکیده
We prove Edmonds-Gallai type structure theorems for Mader’s edgeand vertex-disjoint paths including also capacitated variants, and state a conjecture generalizing Mader’s minimax theorems on path packings and Cunningham and Geelen’s path-matching theorem.
منابع مشابه
On Open Packing Number of Graphs
In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.
متن کاملPacking Trees into Planar Graphs
1 I n t r o d u c t i o n We say that the graphs H 1 , . . . , Hk can be packed into a graph G if G contains subgraphs isomorphic to H 1 , . . . , Hk and pairwise edge disjoint. The problem of packing graphs has been widely studied, especially when G is a complete graph. For instance, it is known that two trees with n vertices none of them equal to a star can be packed into K~ [2]. The packing ...
متن کاملPath packing and a related optimization problem
Let G = (N, E) be a supply graph, with the node set N and edge set E, and (T, S) be a demand graph, with T ⊆ N , S ∩ E = ∅. Observe paths whose end-vertices form pairs in S (called S-paths). The following path packing problem for graphs is fundamental: what is the maximal number of S-paths in G? In this paper this problem is studied under two assumptions: (a) the node degrees in N \ T are even,...
متن کاملVertex Contact Graphs of Paths on a Grid
Contact and intersection representations of graphs and particularly of planar graphs have been studied for decades. The by now best known result in the area may be the Koebe-Andreev-Thurston circle packing theorem. A more recent highlight in the area is a result of Chalopin and Gonçalves: every planar graph is an intersection graph of segments in the plane. This boosted the study of intersectio...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کامل